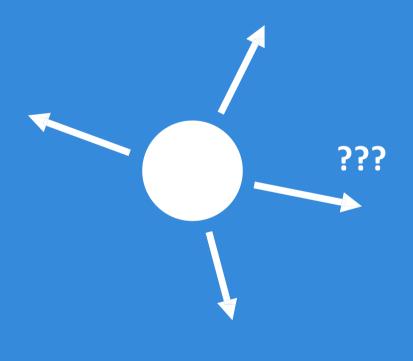
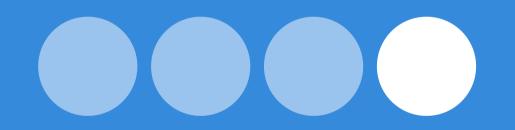
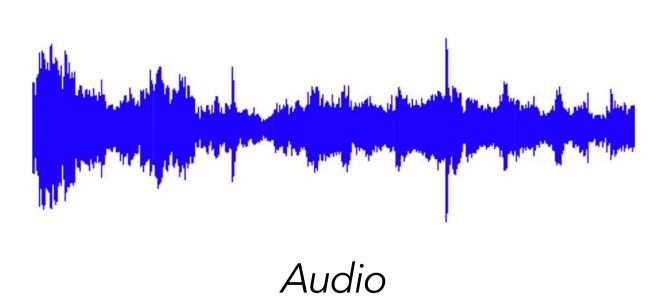
Deep Sequence Modeling







6.S191 Introduction to Deep Learning introtodeeplearning.com

Audio

6.S191 Introduction to Deep Learning introtodeeplearning.com

character:

6.S191 Introduction to Deep Learning

word:

Text

6.S191 Introduction to Deep Learning introtodeeplearning.com

1/28/19

6 . S I 9 character:

Deep Learning Introduction to word:

Text

Massachusetts

6.S191 Introduction to Deep Learning introtodeeplearning.com

A Sequence Modeling Problem: Predict the Next Word

A sequence modeling problem: predict the next word

"This morning I took my cat for a walk." given these words predict the next word

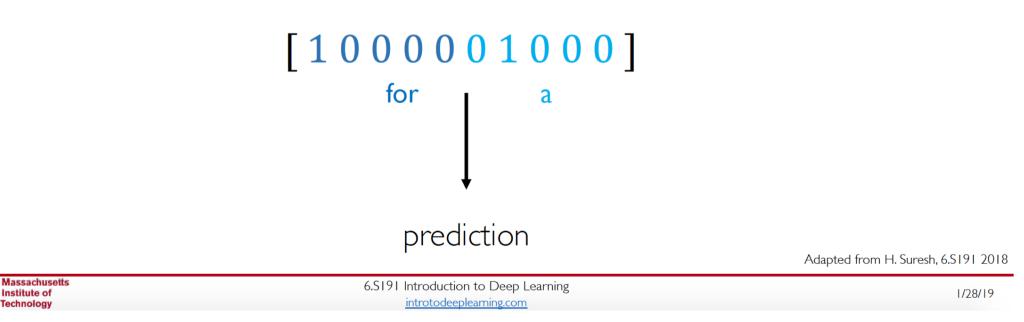
Adapted from H. Suresh, 6.S191

2018

Idea #1: use a fixed window

"This morning I took my cat for a walk." given these predict the two words next word

One-hot feature encoding: tells us what each word is

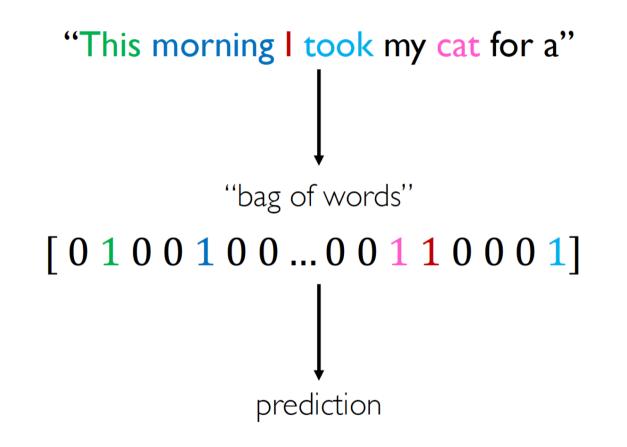


Problem #1: can't model long-term dependencies

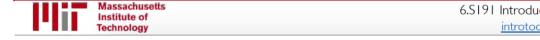
"France is where I grew up, but now I live in Boston. I speak a fluent _____"

We need information from the distant past to accurately predict the current word

Idea #2: use entire sequence as set of counts



Adapted from H. Suresh, 6.S191 2018



6.S191 Introduction to Deep Learning introtodeeplearning.com

Problem #2: counts don't preserve order

VS.

The food was bad, not good at all.

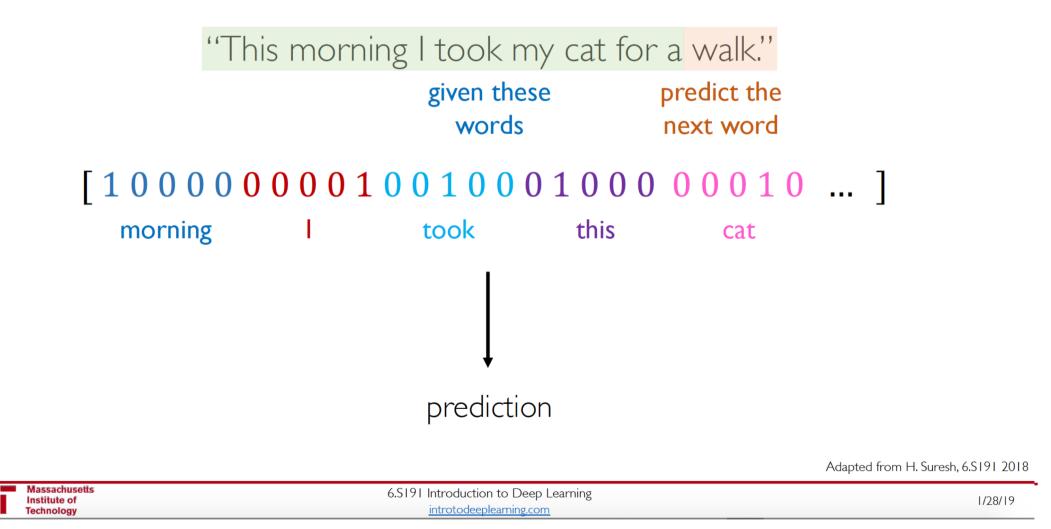
Adapted from H. Suresh, 6.S191 2018

Massachusetts Institute of Technology

6.S191 Introduction to Deep Learning introtodeeplearning.com

1/28/19

Idea #3: use a really big fixed window



Problem #3: no parameter sharing

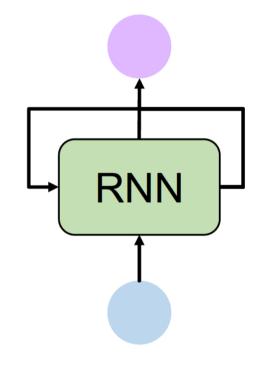
Each of these inputs has a **separate parameter**:

Adapted from H. Suresh, 6.S191 2018

Sequence modeling: design criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

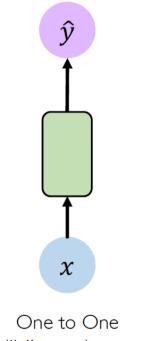


Today: **Recurrent Neural Networks (RNNs)** as an approach to sequence modeling problems

Adapted from H. Suresh, 6.S191 2018

Recurrent Neural Networks (RNNs)

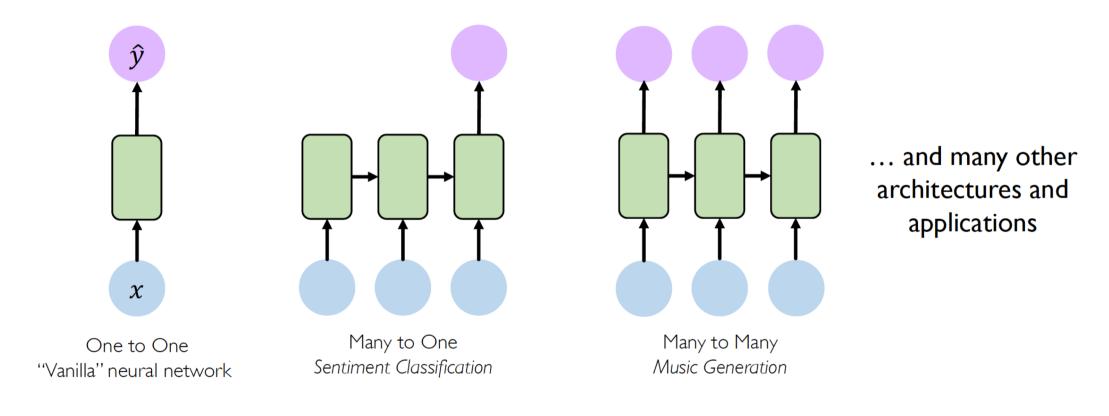
Standard feed-forward neural network



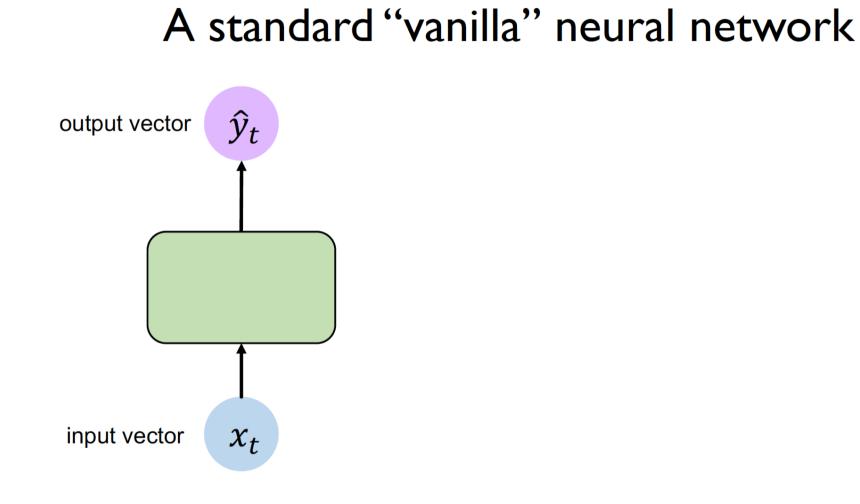
"'Vanilla'' neural network

6.5191 Introduction to Deep Learning introtodeeplearning.com

Recurrent neural networks: sequence modeling

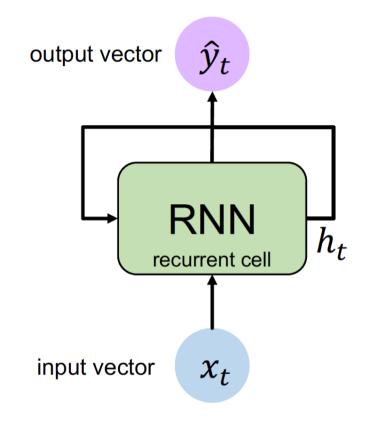


14117	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com	1/28/19



6.S191 Introduction to Deep Learning introtodeeplearning.com

A recurrent neural network (RNN)

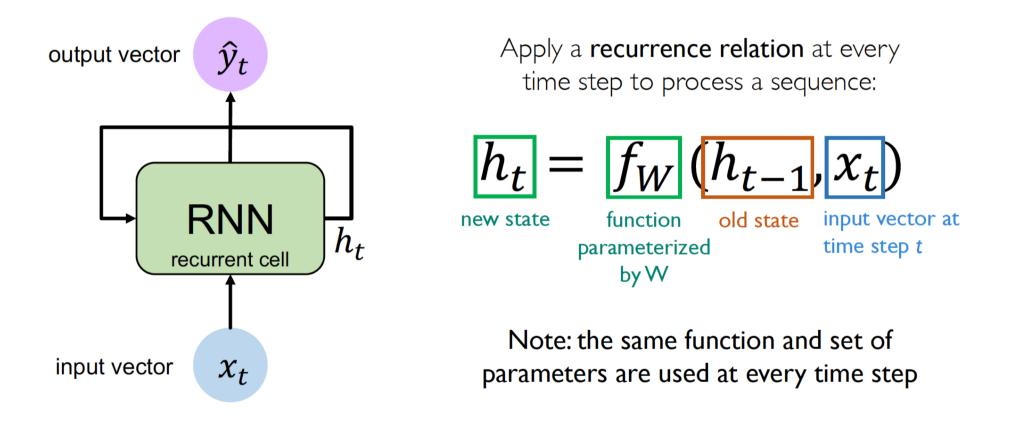


Recurrent:

information is being passed internally from one time step to the next

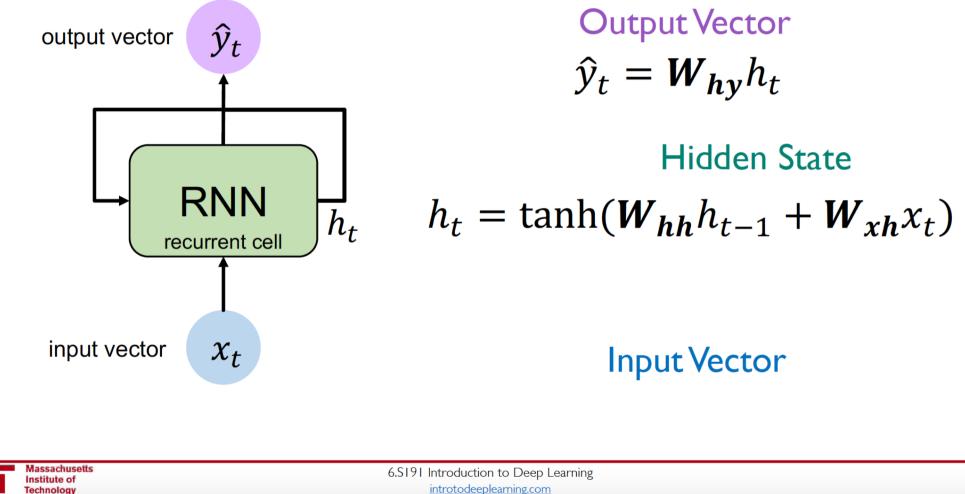
6.S191 Introduction to Deep Learning introtodeeplearning.com

A recurrent neural network (RNN)

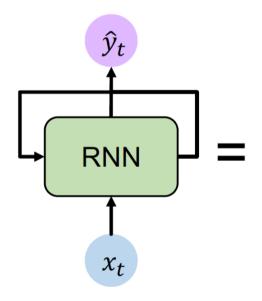


Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com

RNN state update and output



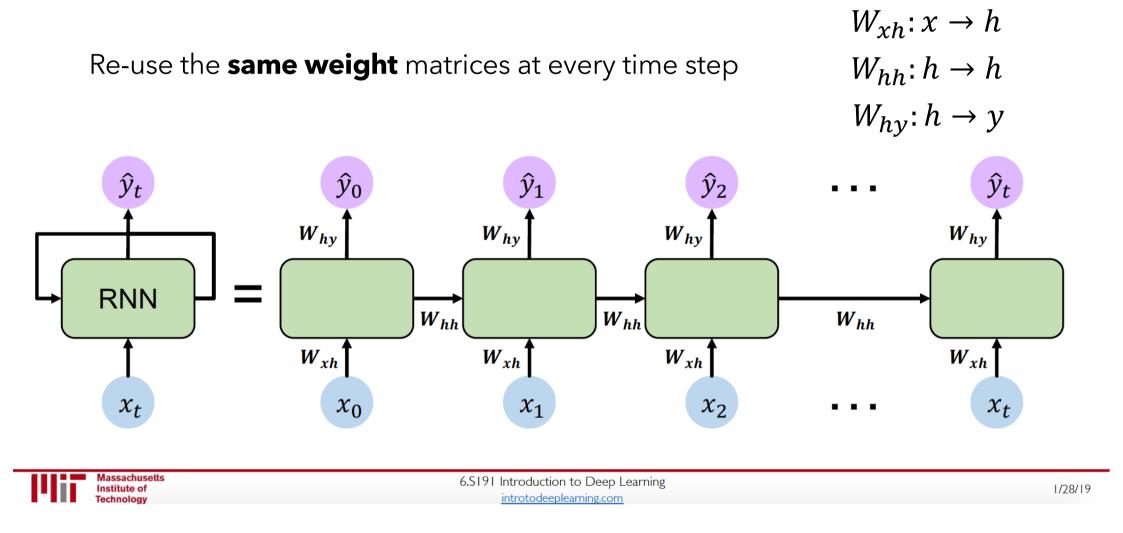
RNNs: computational graph across time

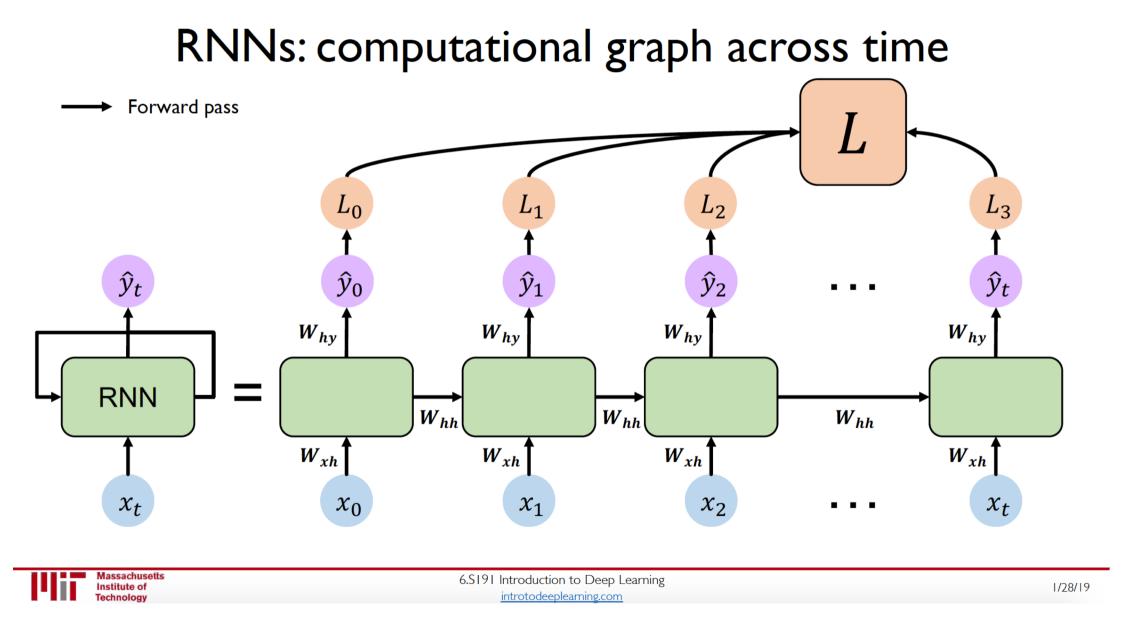


Represent as computational graph unrolled across time

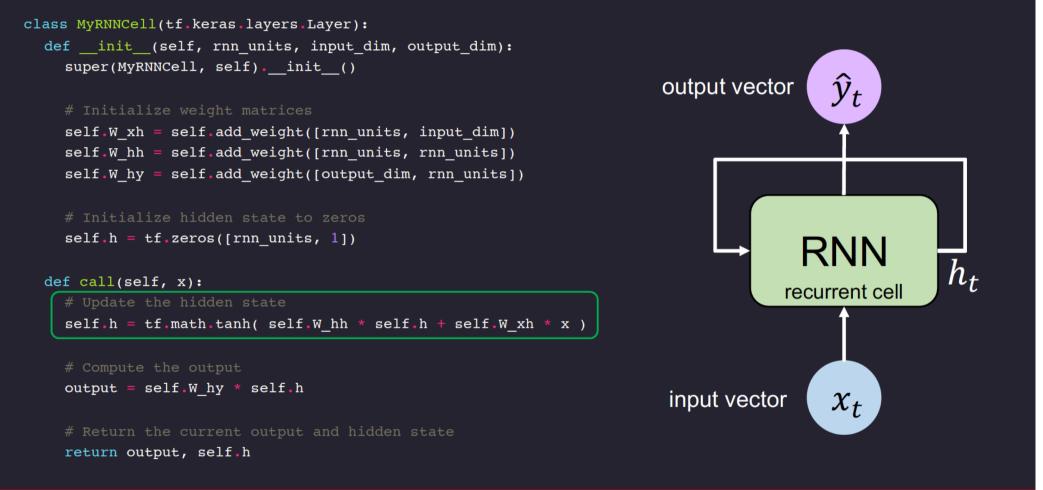
6.5191 Introduction to Deep Learning introtodeeplearning.com

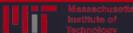
RNNs: computational graph across time



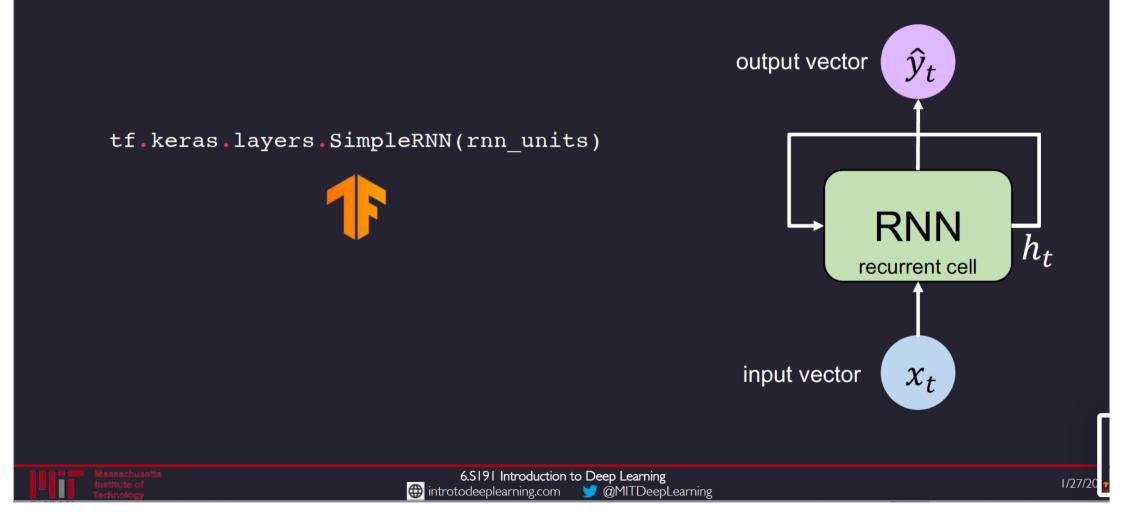


RNNs from Scratch



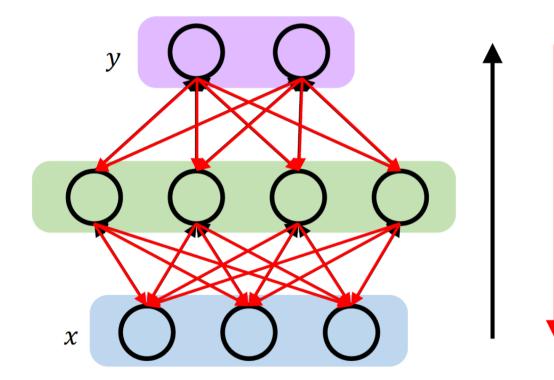


RNN Implementation in TensorFlow



Backpropagation Through Time(BPTT)

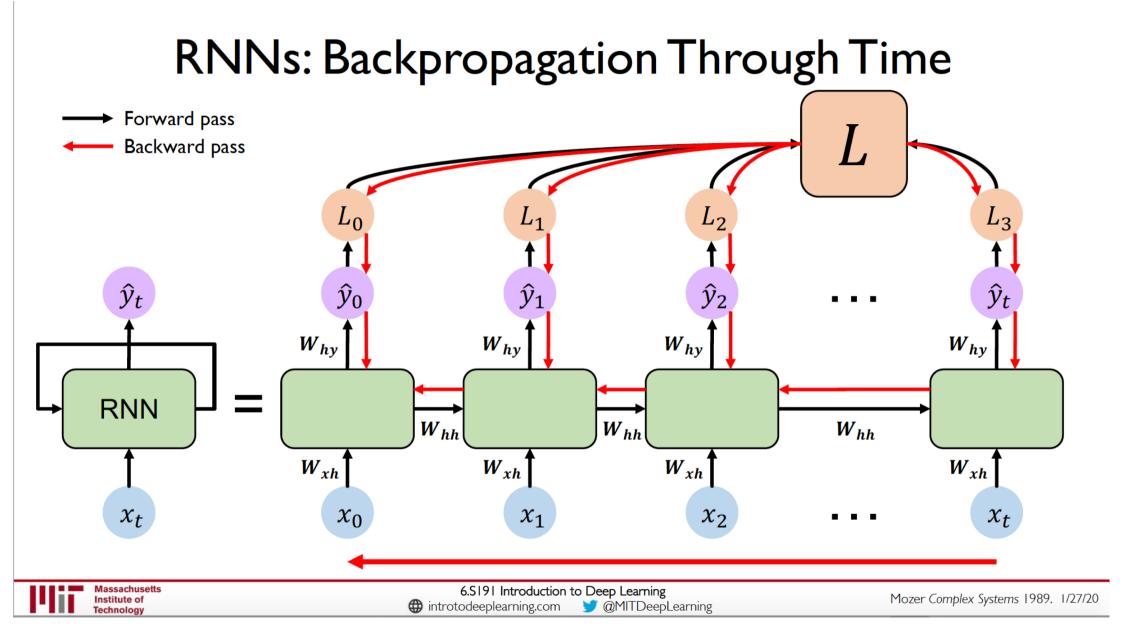
Recall: backpropagation in feed forward models



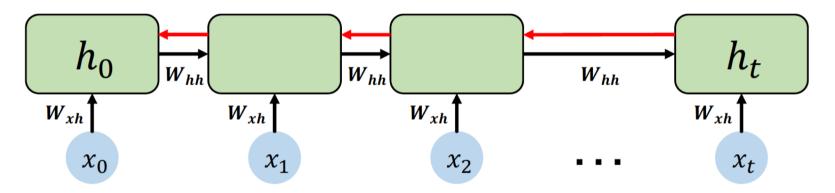
Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

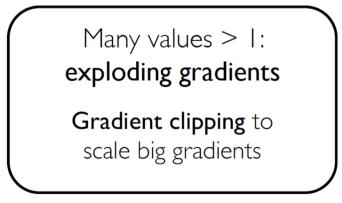
[3]



Standard RNN gradient flow: exploding gradients



Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

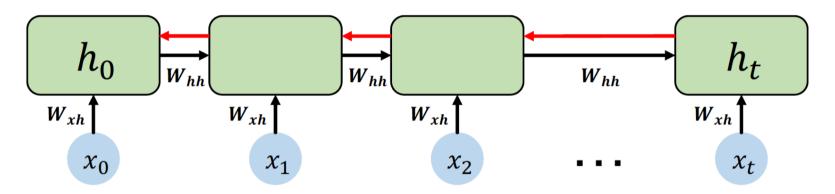


6.S191 Introduction to Deep Learning introtodeeplearning.com

1/28/19

[1]

Standard RNN gradient flow: vanishing gradients



Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

argest singular value > exploding gradients

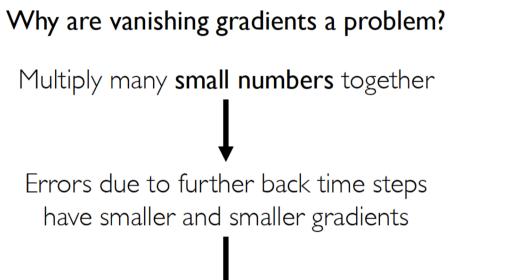
Gradient clipping to scale big gradients

Largest singular value < 1: vanishing gradients

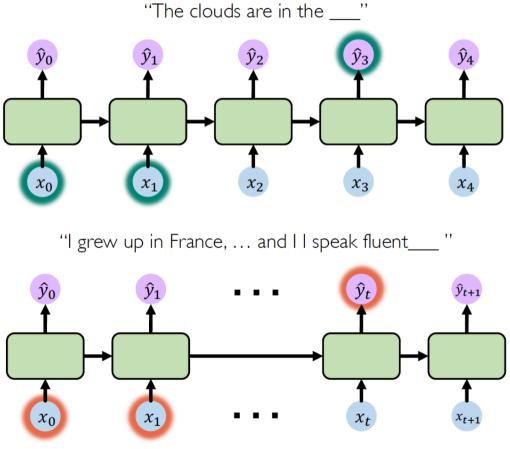
- . Activation function
- 2. Weight initialization
- 3. Network architecture

[1]

The problem of long-term dependencies

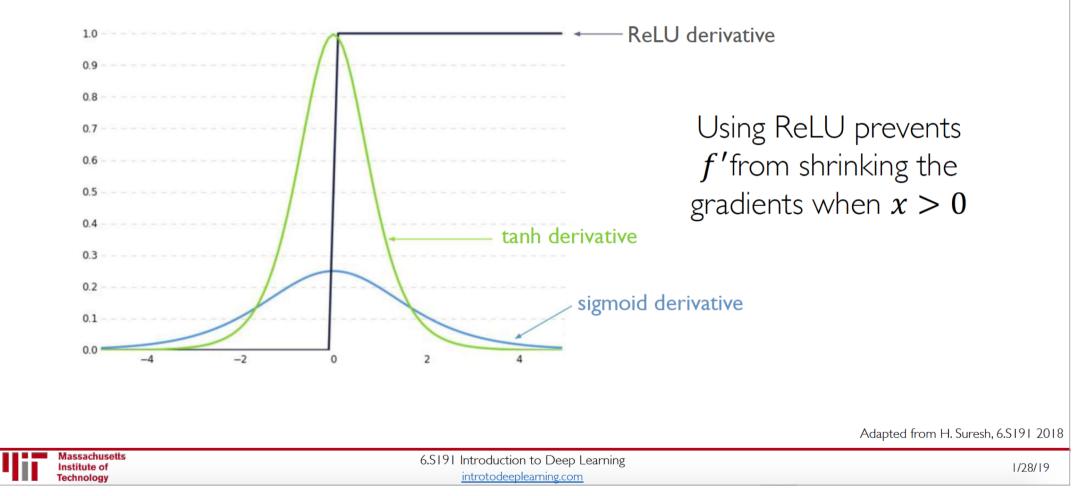


Bias parameters to capture short-term dependencies



6.S191 Introduction to Deep Learning introtodeeplearning.com

Trick #1: activation functions



Trick #2: parameter initialization

Initialize weights to identity matrix

Initialize biases to zero

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

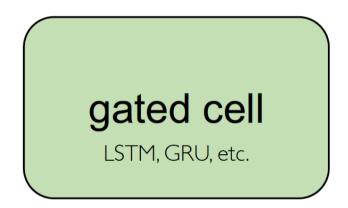
This helps prevent the weights from shrinking to zero.

Adapted from H. Suresh, 6.S191 2018

0

Solution #3: gated cells

Idea: use a more **complex recurrent unit with gates** to control what information is passed through



Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Adapted from H. Suresh, 6.S191 2018

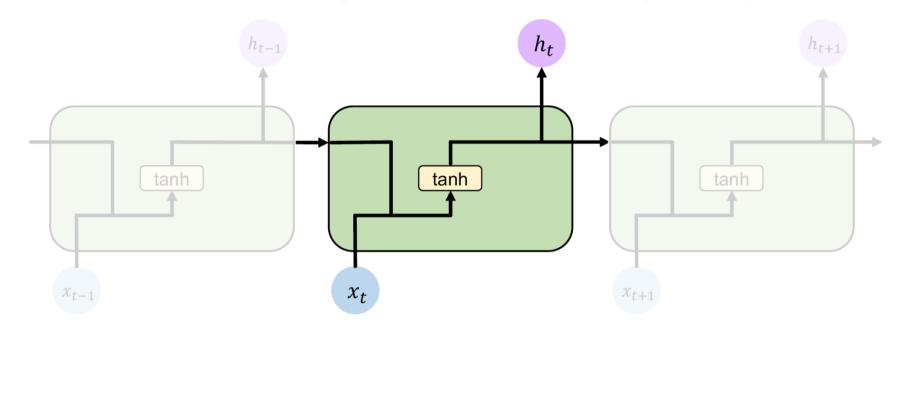
6.S191 Introduction to Deep Learning introtodeeplearning.com

1/28/19

Long Short Term Memory (LSTM) Networks

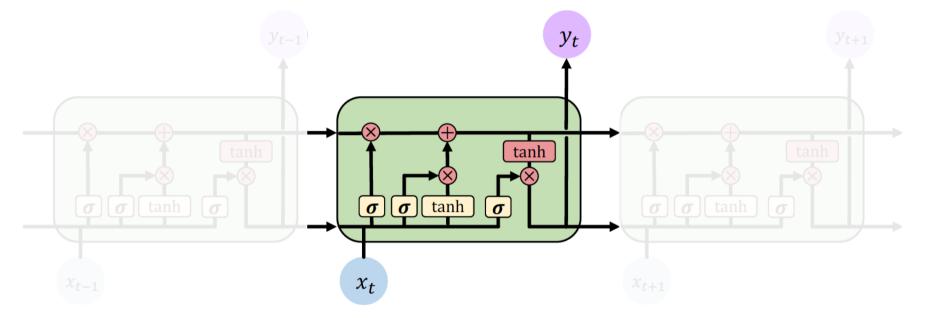
Standard RNN

In a standard RNN, repeating modules contain a simple computation node



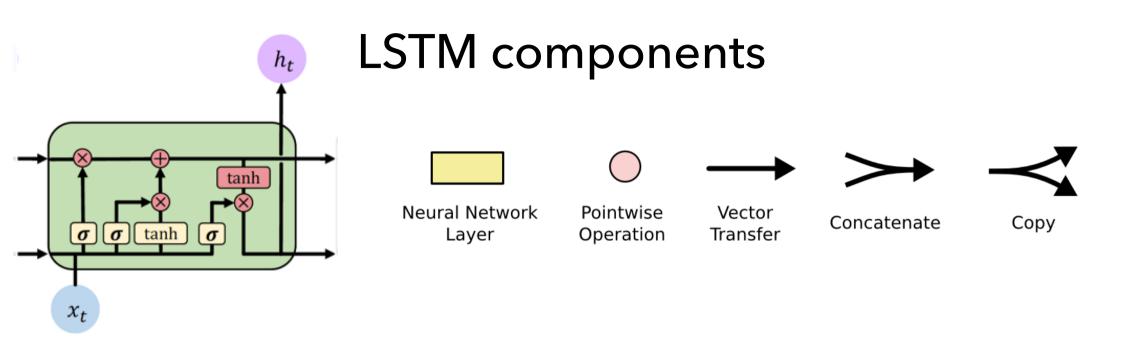
Long Short Term Memory (LSTMs)

LSTM modules contain **computational blocks** that **control information flow**



LSTM cells are able to track information throughout many timesteps

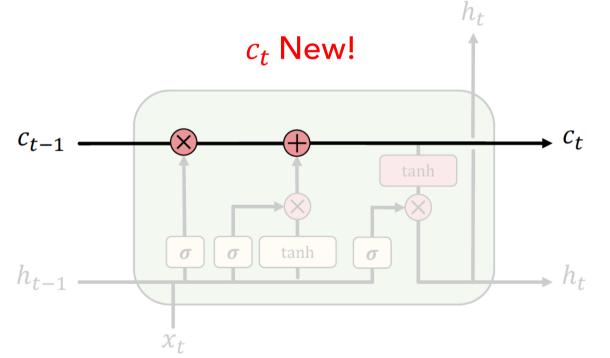
Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning	Hochreiter & Schmidhuber, Neural Computation 1997. 1/27/20
Technology	🌐 introtodeeplearning.com 🛛 🈏 @MITDeepLearning	



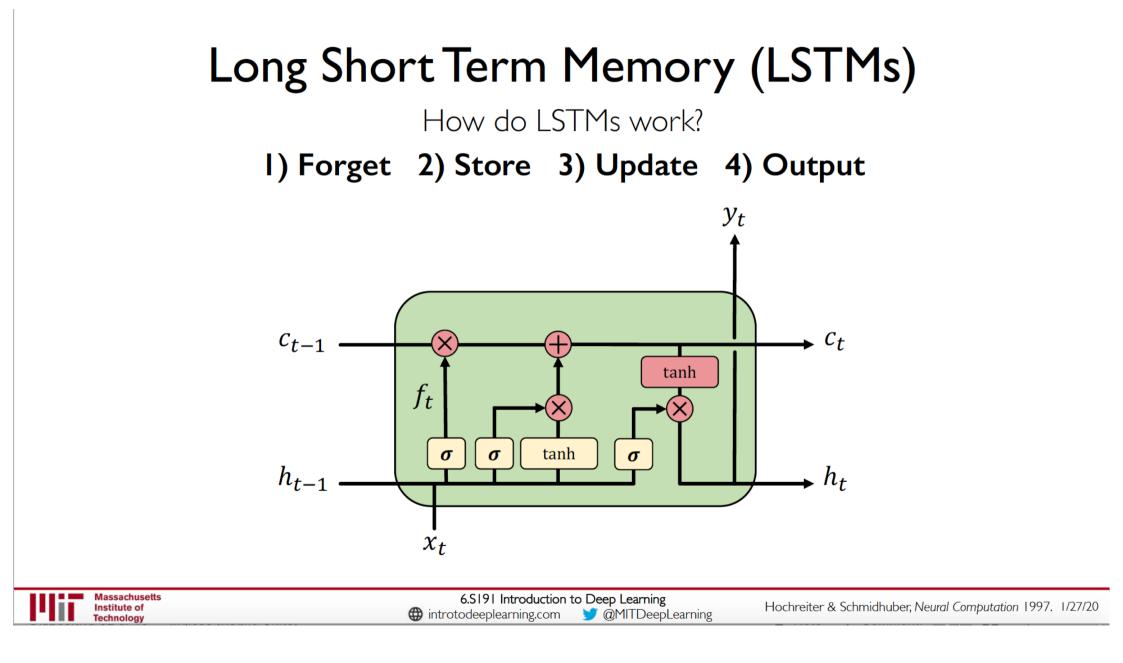
- <u>Yellow boxes</u>: learned neural network layers.
- <u>Pink circles</u>: pointwise operations (ex vector addition)
- Lines merging: concatenation
- Line forking: copies go to different locations

Long Short Term Memory (LSTMs)

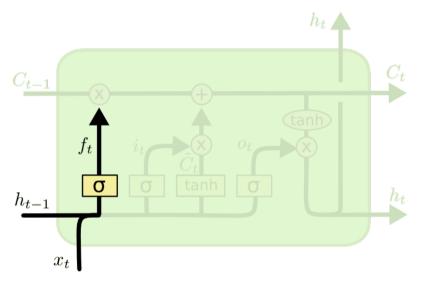
LSTMs maintain a **cell state** C_t where it's easy for information to flow



		[2, 5]
Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeepleaming.com	1/28/19



Forget gate layer



Forget gate:

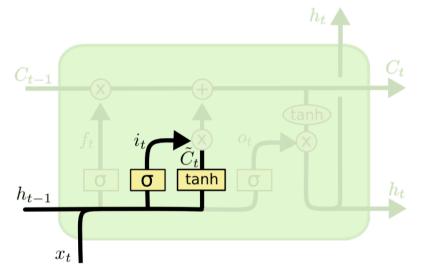
- it controls which information to remember and which to forget
- it can also reset the cell state

Mathematically:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

- a <u>Sigmoid</u> σ
- Input: h_{t-1} and x_t
- <u>Output</u>: nb. between 0 and 1:
 - 0: forget
 - 1: remember

Input gate layer



Input gate:

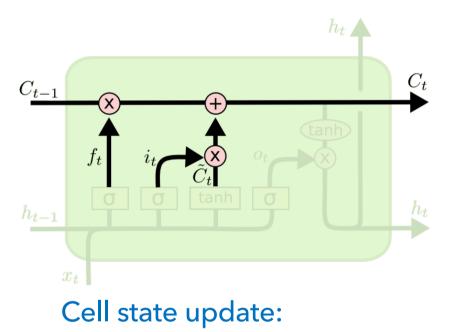
- decide what new information to store in the cell state
- 2 parts

Mathematically:

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

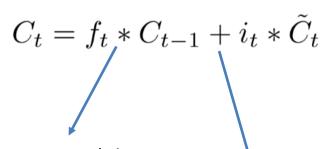
- A <u>tanh</u> (create a new candidate to be possibly added to the state)
- a $\underline{Sigmoid} \sigma$ (to decide which values to update)

Cell State update



- Update C_{t-1} to C_t
- Apply the decision taken in the previous step

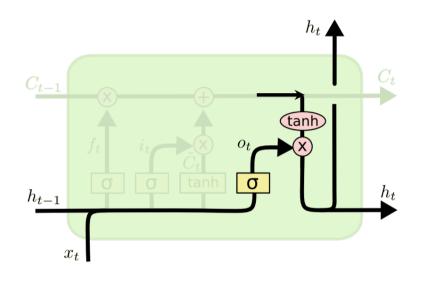
Mathematically:



Forget old irrelevant information

Add the weighted new candidate

Output gate layer



Output gate:

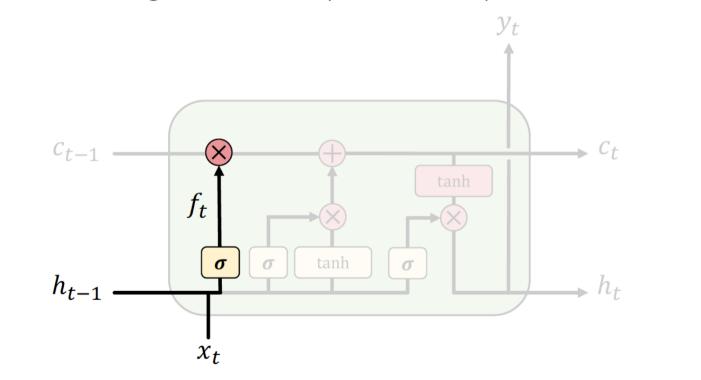
- Output: filtered version of the cell state
- 2 parts

Mathematically:

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

- a Sigmoid σ (to decide which part of the cell state to output)
- A <u>tanh</u> (cell state pushed between -1 1)

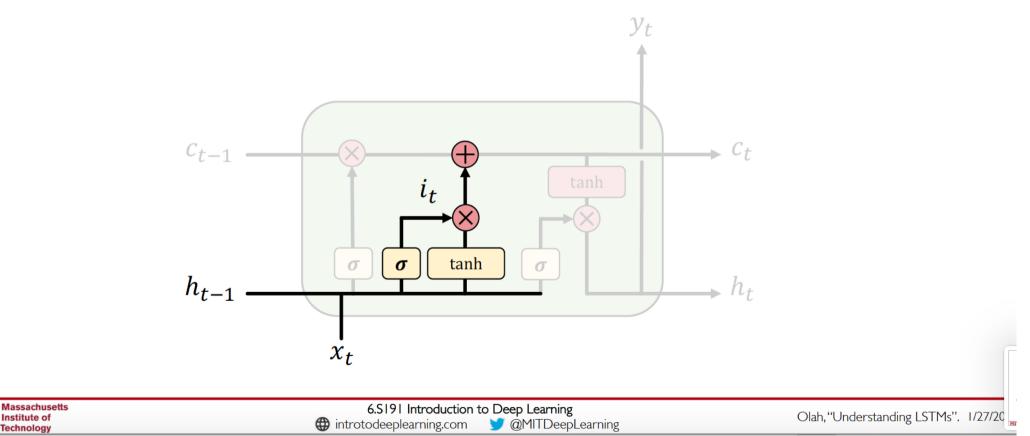
I) Forget 2) Store 3) Update 4) Output LSTMs **forget irrelevant** parts of the previous state

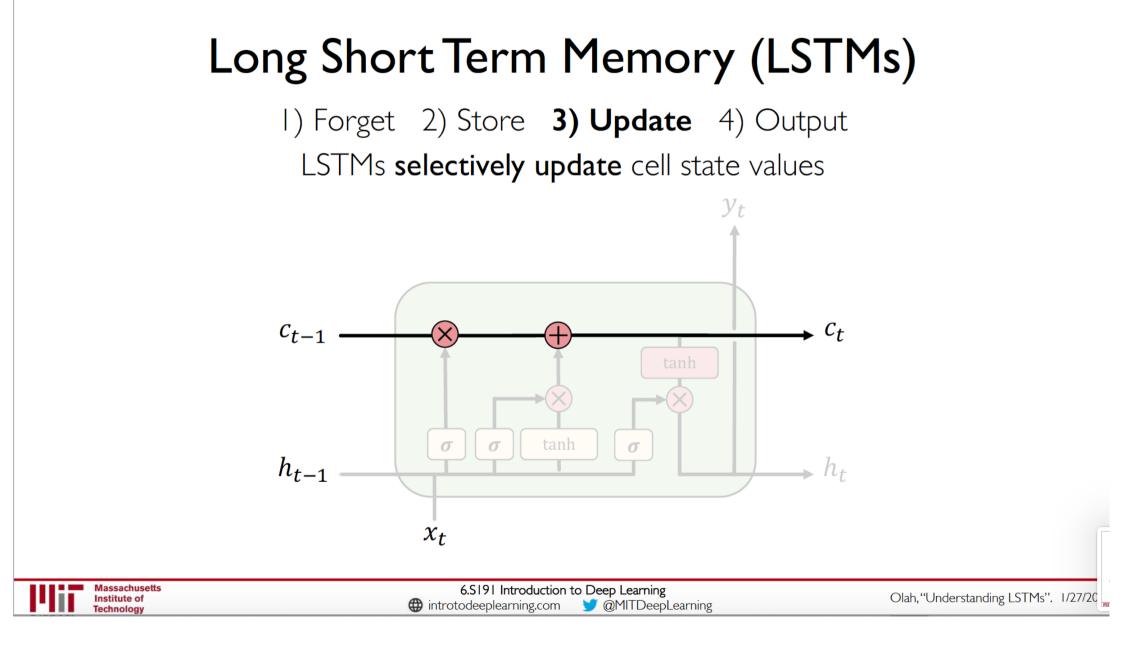


11117	Massachusetts Institute of Technology	6.5191 Introduction to Deep Learning	Olah, "Understanding LSTMs". 1/27/20
Techno	Technology	🌐 introtodeeplearning.com 🛛 😏 @MITDeepLearning	Ŭ

Long Short Term Memory (LSTMs)

I) Forget 2) Store 3) Update 4) OutputLSTMs store relevant new information into the cell state

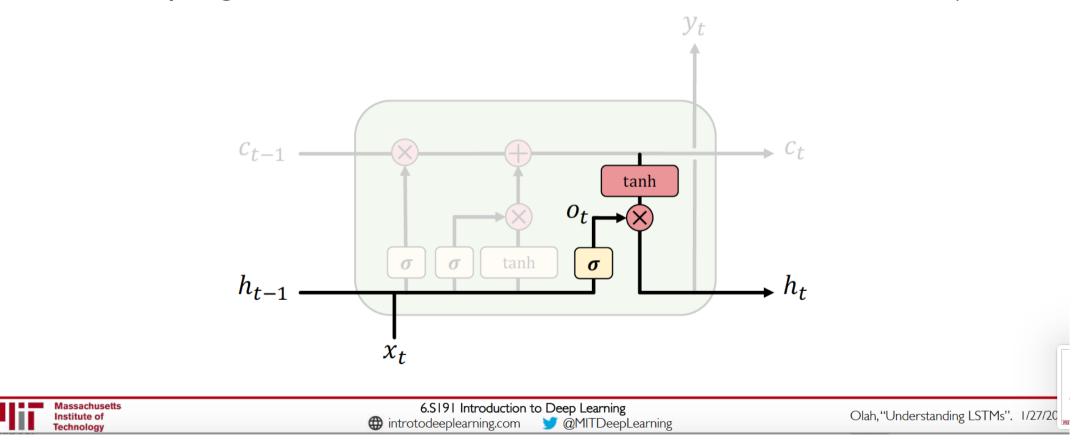




Long Short Term Memory (LSTMs)

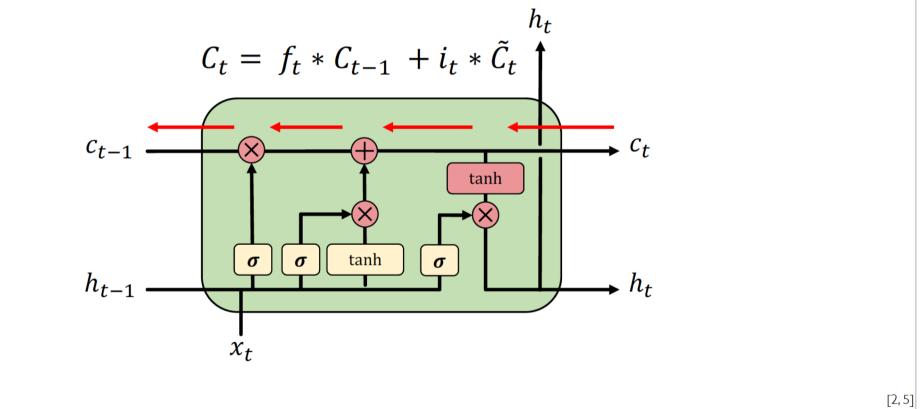
I) Forget 2) Store 3) Update 4) Output

The **output gate** controls what information is sent to the next time step



LSTM gradient flow

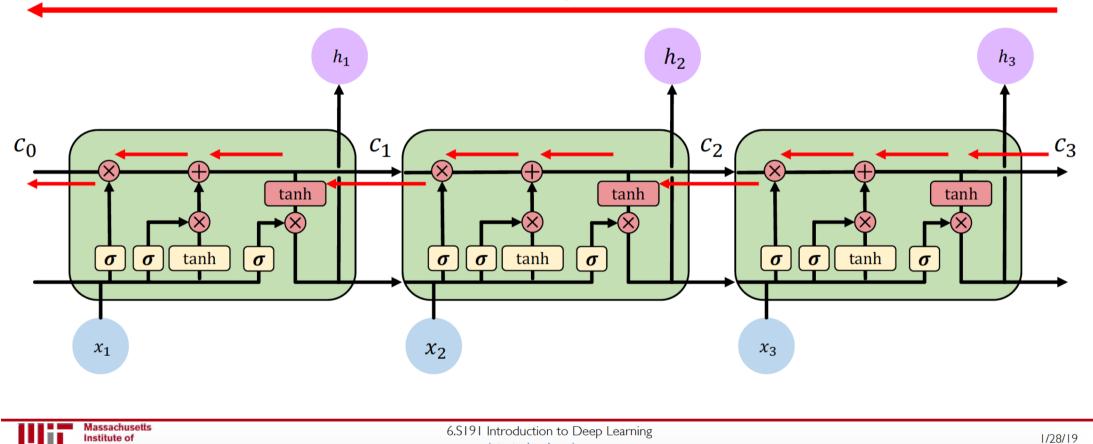
Backpropagation from C_t to C_{t-1} requires only elementwise multiplication! No matrix multiplication \rightarrow avoid vanishing gradient problem.



IIIi ī	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com	1/28/19

LSTM gradient flow

Uninterrupted gradient flow!



introtodeeplearning.com

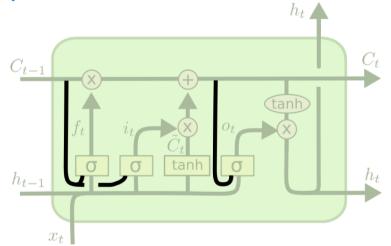
Technology

LSTMs: key concepts

- I. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication: uninterrupted gradient flow

Many variants, almost in each paper

• Peephole connections



$$f_{t} = \sigma \left(W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f} \right)$$

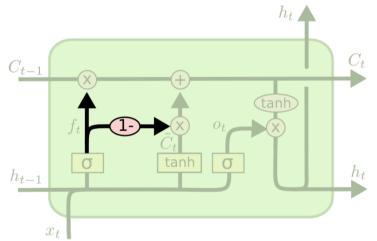
$$i_{t} = \sigma \left(W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [C_{t}, h_{t-1}, x_{t}] + b_{o} \right)$$

The gate layers look at the cell state

Many variants, almost in each paper

• Tie connections

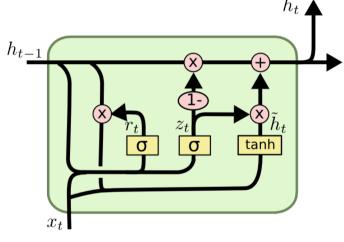


$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

- Forget when we input something in its place.
- Input new values to the state when we forget something older.

Many variants, almost in each paper

• Gated Recurrent Unit (GRU)



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

- "Update gate": combines forget and input gates
- Merges Cell and hidden states

Many variants, almost in each paper

- Depth Gated RNNs
- Clockwork RNNs
- • •

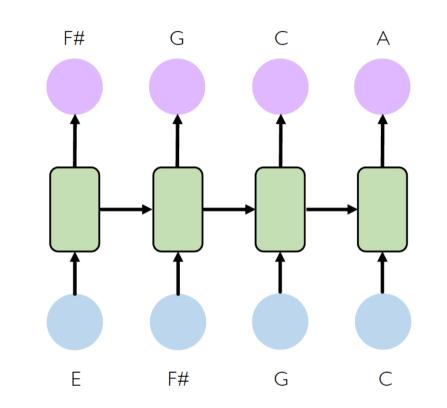
Which one is the best?

Comparisons in:

- Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE TNNLS
- Jozefowicz, Rafal, et al. "An empirical exploration of recurrent network architectures." In: *Int'l conference on machine learning*. 2015. p. 2342-2350.

RNN Applications

Example task: music generation



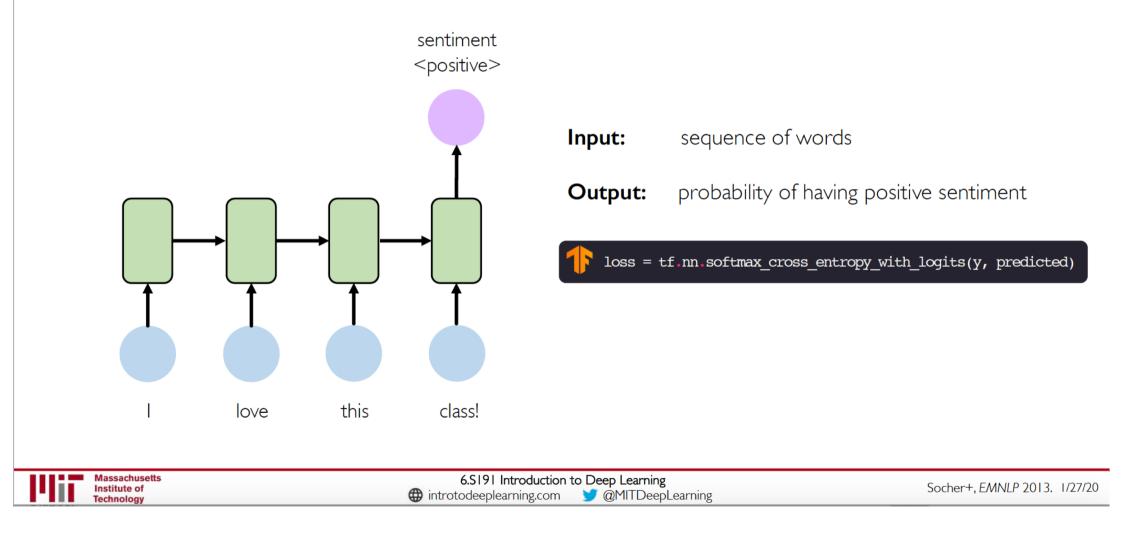
Input: sheet music

Output: next character in sheet music

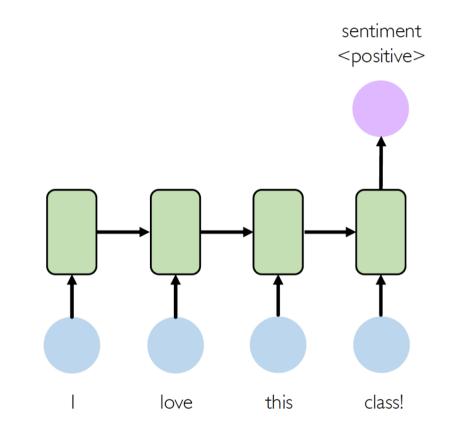
Adapted from H. Suresh, 6.S191 2018

Massachusetts Institute of	6.5191 Introduction to Deep Learning	1/28/19
Technology	introtodeeplearning.com	1720/17

Example Task: Sentiment Classification



Example task: sentiment classification



Tweet sentiment classification

Ivar Hagendoorn @IvarHagendoorn

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

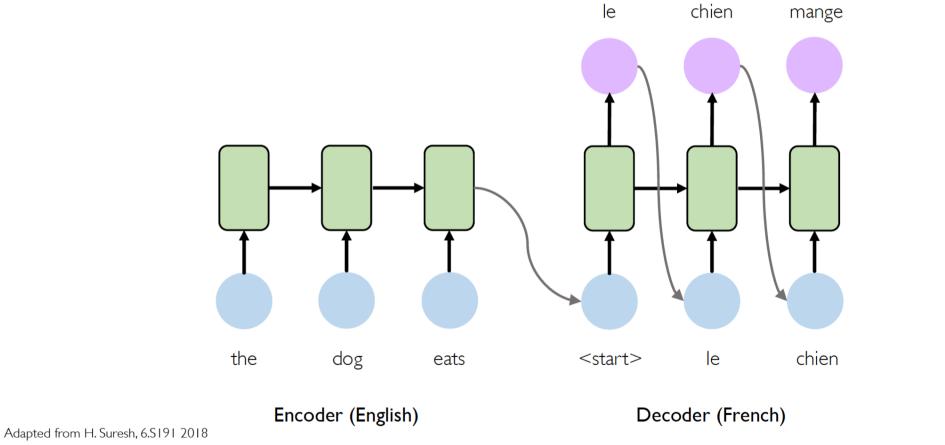
Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

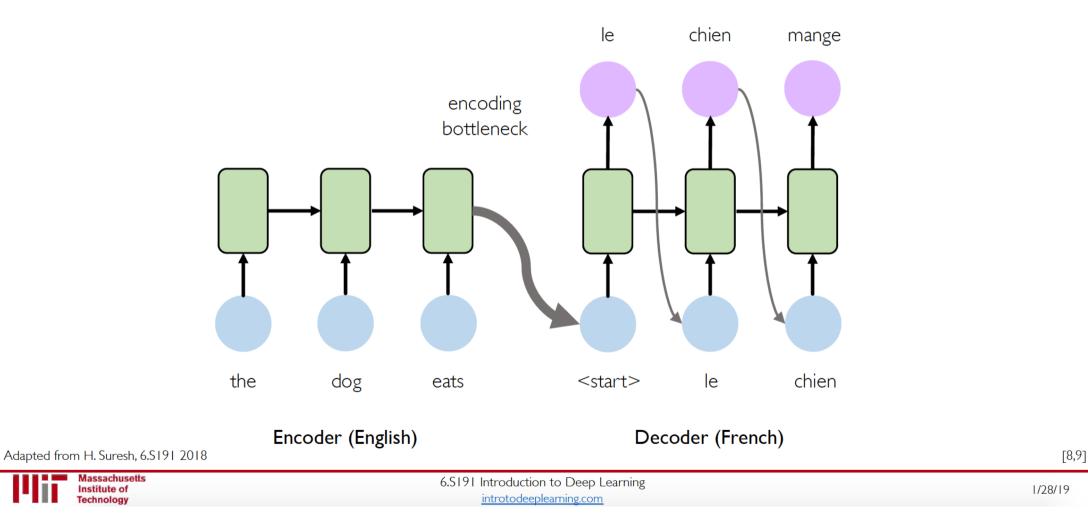
2:19 AM - 25 Jan 2019

Adapted from H. Suresh, 6.S191 2018

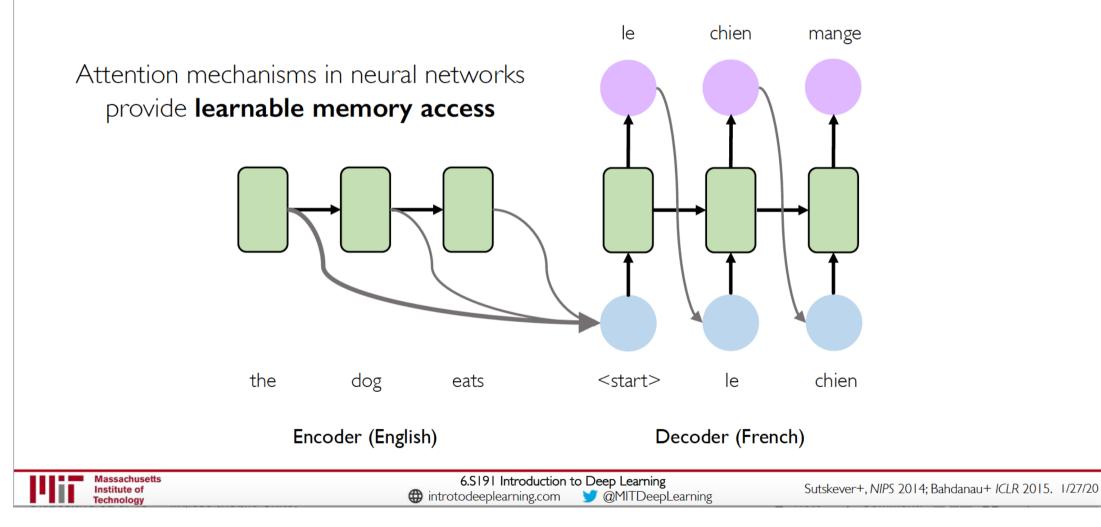
Example task: machine translation



Example task: machine translation

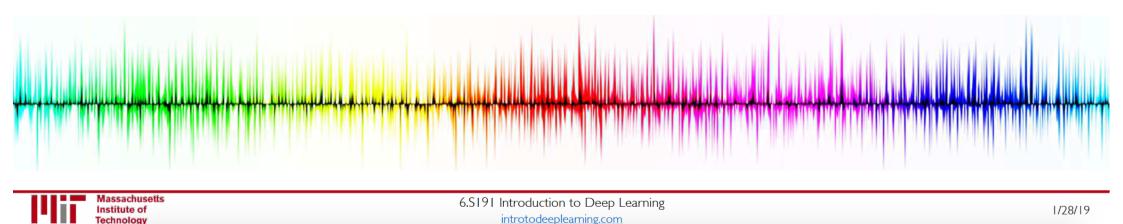


Attention Mechanisms



Recurrent neural networks (RNNs)

- I. RNNs are well suited for **sequence modeling** tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with **backpropagation through time**
- 4. Gated cells like LSTMs let us model long-term dependencies
- 5. Models for **music generation**, classification, machine translation



References

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

