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A Sequence Modeling Problem:  
Predict the Next Word



A sequence modeling problem: predict the nextword

Adapted from H. Suresh, 6.S191
2018
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given these words predict the  
next word

“This morning I took my cat for a walk.”





Problem #1: can’t model long-term dependencies

“France is where I grew up, but now I live in Boston. I speak a fluent ____”

We need information from the distant past 
to accurately predict the current word 
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Recurrent Neural Networks (RNNs)
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Recurrent: 
information is being 
passed internally from 
one time step to the 
next
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Backpropagation Through Time(BPTT)



















Long Short Term Memory (LSTM) Networks







LSTM components

• Yellow boxes: learned neural network layers. 
• Pink circles:  pointwise operations (ex vector addition)
• Lines merging: concatenation
• Line forking: copies go to different locations



!" New!





Forget gate layer

Forget gate: 

• it controls which information to 
remember and which to forget

• it can also reset the cell state 

• a Sigmoid σ

• Input: ht-1 and xt

• Output: nb. between 0 and 1:
• 0: forget
• 1: remember

Mathematically:



Input gate layer

Input gate: 
• decide what new information  

to store in the cell state
• 2 parts

• A tanh
(create a new candidate to be possibly 
added to the state) 

• a Sigmoid σ
(to decide which values to update )

Mathematically:



Cell State update

Cell state update: 
• Update ! "#$ to ! "
• Apply the decision taken in 

the previous step

Mathematically:

Forget old 
irrelevant 
information

Add the 
weighted new 
candidate



Output gate layer

Output gate: 

• Output: filtered version of the 
cell state

• 2 parts

• a Sigmoid σ
(to decide which part of the cell
state to output )

• A tanh
(cell state pushed between -1 1) 

Mathematically:















LSTMs: key concepts
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1. Maintain a separate cell state from what is outputted

2. Use gates to control the flow of information
• Forget gate gets rid of irrelevant information

• Selectively update cell state

• Output gate returns a filtered version of the cell state

3. Backpropagation from !" to !#$% doesn’t require matrix multiplication:
uninterrupted gradient flow



Variants on Long Short Term Memory 
Many variants, almost in each paper

The gate layers look at the cell state

• Peephole connections



Variants on Long Short Term Memory 
Many variants, almost in each paper

- Forget when we input something in its place. 
- Input new values to the state when we forget something older.

• Tie connections



Variants on Long Short Term Memory 
Many variants, almost in each paper

- ‘’Update gate’’: combines forget and input gates
- Merges Cell and hidden states

• Gated Recurrent Unit (GRU)



Variants on Long Short Term Memory 
Many variants, almost in each paper

• Depth Gated RNNs
• Clockwork RNNs
• …

Which one is the best?
Comparisons in:
• Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE TNNLS

• Jozefowicz, Rafal, et al. "An empirical exploration of recurrent network architectures." 
In: Int’l conference on machine learning. 2015. p. 2342-2350.



RNNApplications







Adapted from H. Suresh, 6.S191 2018
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